Ordres complexes élucidés en combinant la diffraction des rayons X et des électrons dans les séries Sr2Sb2O2+xS3-x et Sr2Sb2O2+xSe3-x

Olivier PEREZ (CRISMAT / CNRS. Caen)

Pascal ROUSSEL (University of Lille, CNRS, Centrale Lille, ENSCL, University of Artois, Unité de Catalyse et Chimie du Solide, Lille)

Philippe BOULLAY (CRISMAT / CNRS, Caen)

Sandy AL BACHA (CRISMAT / CNRS, Caen)

Emma MCCABE (Departement of Physics, Durham University, Durham)
Houria KABBOUR (Institut des Matériaux de Nantes Jean Rouxel, Nantes Université, CNRS, Nantes)

Abstract

La prédiction de la structure et des propriétés et la synthèse/caractérisation, de nouveaux composés d'intercroissance (oxydes, oxy-halogénures) avec un empilement original, permet de contrôler les propriétés globales d'un composé. Les séries Sr2Sb2O2+xS3-x et Sr2Sb2O2+xSe3-x sont ainsi étudiées pour leurs propriétés photocatalytiques telle que la division l'eau en hydrogène et oxygène en exploitant l'énergie solaire. L'hydrogène ainsi produit peut-être utilisé comme source d'énergie propre dans les piles à combustible pour produire de l'électricité propre.

Les matériaux de ces séries présentent la même sous-maille a=9.30Å b=3.95Å c=11.23Å ?=90° ?=101.78° ?=90° mais avec un ordre différent caractérisé par le vecteur de modulation q = ? a* + ½ b*. L'analyse structurale des différents membres de ces nécessite une étude minutieuse du réseau réciproque afin d'obtenir une description commune cohérente avec la symétrie du système.

A cette fin des expériences de diffraction des RX sur mono cristal (XSCD) ont été envisagées. Malheureusement, pour tous les composés de cette série, une seule préparation a produit des cristaux de taille suffisante pour l'XSCD. Pour les autres préparations, la diffraction électronique en mode 3D-ED a donc été utilisée avec succès pour obtenir des informations sur le réseau réciproque.

La XSCD a permis d'obtenir des données très complètes et de haute résolution ; son analyse a fourni tous les indices nécessaires pour révéler la structure du cristal mesuré et pour définir un modèle applicable aux autres composés. Ce modèle a été introduit pour décrire tous les membres de la série. Ensuite, les affinements structuraux, utilisant une approche dynamique dans le cas des données 3D-ED, ont révélé d'autres détails de ces structures avec notamment l'ordonnancement et des pistes pour comprendre les mécanismes de stabilisation de ces différents matériaux et leurs intérêts vis-à-vis des propriétés de photocatalyse.